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Abstract: A minimum spanning tree is a spanning tree of a connected undirected graph. Each edge is labelled with its 

weight. It connects all the vertices together with the minimal total weight for its edges. In this paper we designed an 

algorithm to find minimum weight spanning tree. 
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I. INTRODUCTION 

 

Here’s a classical task on graphs. We have a group of 

cities and we must wire them to provide them all with 

electricity. Out of all possible connections we can make, 

which one is using minimum amount of wire. 

To wire N cities, it’s clear that, you need to use at least N-

1 wires connecting a pair of cities. The problem is that 

sometimes you have more than one choice to do it. Even 
for small number of cities there must be more than one 

solution as shown on the image bellow. 
 

A. WIRING CITIES 
 

 
 

Here we can wire these four nodes in several ways, but the 

question is, which one is the best one. By the way defining 
the term “best one” is also tricky. Most often this means 

which uses least wire, but it can be anything else 

depending on the circumstances. 

As we talk on weighted graphs we can generally speak of 

a minimum weight solution through all the vertices of the 

graph. By the way there might be more the one equally 

optimal (minimal) solutions. 

 

II. OVERVIEW 

 

Obviously we must choose those edges that are enough to 
connect all the vertices of the graph and whose sum of 

weights is minimal. Since we can’t have cycles in our final 

solution it must form a tree. Thus we’re speaking on a 

minimum weight spanning tree, as the tree spans over the 

whole graph. 

 

 

Does each connected and weighted graph have a minimum 

spanning tree? The answer is yes! By removing the cycles 

from the graph G we get a spanning tree, since it’s 

connected. From all possible spanning trees one or more 

are minimal. 

 

A. SPANNING TREES OF G 
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Although there are more than one spanning tree of G, one 

is the minimum spanning tree (T) If w(u, v) is the weight 

of the edge (u, v), we can speak of weight of any spanning 

tree T – w(T) which is the sum of all the edges forming 

that tree. Thus the weight of the minimum spanning tree is 

less than the weight of whatever other spanning tree of G. 

After we’re sure that there is at least one minimum 

spanning tree for all connected and weighted graphs we 

only need to find it somehow. We can go with an 

incremental approach. At the end we’ll have the minimum 
spanning tree (MST), but before that on each step of our 

algorithm we’ll have a sub-set of this final tree, which will 

grow and grow until it becomes the real MST. This subset 

of edges we’ll keep in one additional set A. 

 

B. GROWING MINIMUM SPANNING TREE 
 

 

 

 

 
 

On each step the set of edges forming MST grow with one 

edge more! So far we know that on each step we have a 

subset of the final MST, but first we need to answer a 

couple of questions. 

 

C. How do we start? 

Well, we’ll start with the empty set of edges. Clearly the 

empty set is a subset of any other set, thus it will be also a 

subset of the MST. 
 

 
 

Since the MST is a subset of edges of G we start with the 

empty set of edges! 

 

D. How do we grow the tree? 

Another question we must answer is how to grow the tree. 

Since we have a MST sub-set (A) on each step how do we 

add an edge to this set in order to get another (bigger than 

the previous one) subset of edges, which will be again a 

subset of the minimum spanning tree? 

Clearly we must make a decision which edge to add to the 
growing subset and this is the tricky part of this algorithm. 

 

III. CHOSE THE LOWEST WEIGHT EDGE! 

 

To find the minimum spanning tree on each step we must 

get the lowest weighted edge that connects our subset (A) 

with the rest of the vertices. 

 

A. CHOSING AN EDGE 
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Each step choosing lowest weight edge 

However can we be sure that by choosing the less 

weighted edge we’ll get the MST? Well, let’s assume that 

isn’t right in order to prove that wrong! 

OK so on some step of our growing sub-tree we don’t get 

the lightest edge (u, v), because we somehow doubt this 

rule, and we get another edge – let’s say (x, y). Mind that 

w(x, y) >= w (u, v). 

 

 

 
 

W(B, C) < w(A, C) 

 
Thus our final MST will contain somewhere in its set of 

edges the edge (x, y), but the weight of MST w(T) is 

minimal, and if we get another spanning tree that contains 

the exact same edges as T but instead of (x, y) contains (u, 

v) we’ll get a smaller weight! 

That isn’t possible! Thus we proved that on each step we 

must get the less weighted edge. 

This particular approach is called “greedy”, because on 

each step we get the best possible choice. However greedy 

algorithms don’t always get the right or optimal solution. 

Fortunately for MST this isn’t true so we can be greedy as 

much as we can! 

OK let’s make a summary of our algorithm in the 

following pseudo code. 

B. Pseudo Code 

1. We start with an empty set (A) subset of the final MST; 

2. Until A does not form T: 

      a. Get the less weighted edge u from G;  

      b. Add u to A; 

3. Return A 

 

C. Feature work 
In a graph G and Minimum Spanning Tree(MST) T, 

suppose that we have decrease the weight of one the edge 

not in T(Increase the edge, which is in T). Written an 

algorithm for finding the MST in the modified graph. 

 

D.  Weight Decreases 

Whenever the weight of a non-tree edge (i, j) is decreased, 

one has to find the maximum weight edge (x, y) along the 

path from i to j in T and to remove it if w(x, y) > w(i, j). 

This can be accomplished by using any dynamic tree data 

structure to store the MST. 
 The procedure to update the minimum spanning tree is 

described in Algorithm 2. Vertex i is made the new root of 

the tree. The maximum weight edge (x, y) in the path from 

j to i is computed in line. If the weight of edge (x, y) is 

larger than that of edge (i, j) (comparison in line 5), then 

the former is removed from the tree by the Cut(x, y) 

operation in line 6 and the new edge (i, j) is inserted by the 

Link (i, j, w(i, j)) operation in line 7. The updated MST is 

returned in line 9. The efficiency of the above 

computations depends on the underlying structure used to 

maintain the MST and to implement the path operations. If 

RD-trees or DRD-trees are used, then Algorithm 2 runs in 
time O(|V|). It runs in time O(log |V|) if a more complex 

implementation (such as ST-trees) is used. 

 

E. Pseudo Code (Decrease weight of non-tree edge) 

1. We start with an existing MST; 

2. Decrease the weight non tree edge 

I. If Decrease non tree edge weight  

II. Repeat until A does not form T: 

a. Get the less weighted edge u from G; 

b. Add u to A; 

3. Return A  
 

F. Weight Increasing 

Whenever the weight of a graph edge (i, j) is increased, 

one has to find the minimum weight edge (x, y) along the 

path from i to j in G and to remove it if w(x, y) < w(i, j). 

This can be accomplished by using any dynamic tree data 

structure to store the MST. 
  
The procedure to update the minimum spanning tree is 

described in Algorithm 2. Vertex i is made the new root of 
the tree. The minimum weight edge (x, y) in the path from 

j to i is computed in line. If the weight of edge (x, y) is 

larger than that of edge (i, j) (comparison in line 5), then 

the former is removed from the tree by the Cut(x, y) 

operation in line 6 and the new edge (i, j) is inserted by the 

Link (i, j, w(i, j)) operation in line 7. The updated MST is 
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returned in line 9. The efficiency of the above 

computations depends on the underlying structure used to 

maintain the MST and to implement the path operations. If 

RD-trees or DRD-trees are used, then Algorithm 2 runs in 

time O(|V|). It runs in time O(log |V|) if a more complex 

implementation (such as ST-trees) is used. 

 

G. Pseudo Code (Increasing weight  of tree edge) 

1. We start with an existing MST; 

2. Decrease the weight non tree edge 
I. If Decrease non tree edge weight  

II. Repeat until A does not form T: 

a. Get the less weighted edge u from G; 

b. Add u to A; 

3. Return A 

 

IV. COMPLETE ALGORITHM: MINIMUM 

WEIGHT SPANNING TREE DYNAMICALLY  

 

INPUT: GRAPH G = (V, E), WEIGHTS W. 

1:  BUILD A LIST A WITH ALL (I, J ) ∈ E; 
2: SORT LIST A BY NON-DECREASING ORDER OF WEIGHTS; 

3: USE LIST A TO COMPUTE THE MST(BY USING KRUSKAL 

OR    PRIMS)  T = (V, E′); 

4: ENTER NEW EDGE VALUE(EITHER 

INCREASE/DECREASE) 

5: INPUT NEW WEIGHT VALUE M AND N 

6: FOR I=0 TO N  DO   //UPDATE 

MATRIX 

7: FOR J=0 TO M DO 

8:  IF(I==P-1 && J==Q-1) 

9:   INPUT M VALUE 
10:    COST[I][J]=M; 

11:    COST[J][I]=M; 

12:    BREAK;  

13:   END IF 

14:  END FOR 

15: END FOR 

16: LET (I, J ) ∈ E BE THE EDGE WHOSE WEIGHT WILL 

CHANGE  TO WNEW ; 

17: S ← A(I, J ); 

18: SET THE NEW EDGE WEIGHT: W(I, J ) ← 𝑤𝑛𝑒𝑤 ; 
19: RECOMPUTED THE MST(BY USING KRUSKAL OR PRIMS)

   T = (V, E′); 

20: END 

 

V. COMPLEXITY 

 

A graph (positive weight edges) with a MST If some edge, 

e is modified to a new value, what is the best way to 

update the MST without completely remaking it. I think 

this can be done in linear time. Also, it seems that I would 

need a different algorithm based on whether 1) e is already 
a part of the MST and 2) whether the new edge, e is larger 

or smaller than the original. 

 

A. There are 4 cases: 

Edge is in MST and you decreasing value of edge: 
Current MST is still MST 

Edge is not in MST and you decreasing value of edge: 

Add this edge to the MST. Now you've got exactly 1 cycle. 

Based on cycle property in MST you need to find and 

remove edge with highest value that is on that cycle. You 

can do it using BFS or DFS. Complexity O(n). 

 

Edge is in MST and you increasing its value of edge: 
Remove this edge from MST. Now you have 2 connected 

components that should be connected. You can calculate 

both components in O(n) (BFS or DFS). You need to find 
edge with smallest value that connects these components. 

Iterate over edges in ascending order by their value. 

Complexity O(n). 

 

Edge is not in MST and you increasing its value of edge: 
Current MST is still MST 

 

B. Application 

Actually this algorithm is used firstly by Borůvka which 

started to wire Moravia in 1926. Even without knowing 

that the “greedy” approach will lead him to the right 
solution he optimally covered Moravia with electricity. 

However this algorithm is too general and there are two 

main algorithms – the Prim’s algorithm and the Kruskal’s 

algorithm that we shall see in future posts. 

The thing is that on each step we must get the less 

weighted edge and both algorithms use different 

approaches to do that.  
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